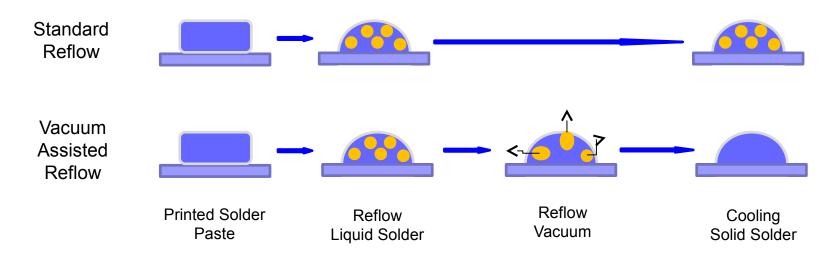
Reflow Techniques for Void Reduction BTC Void Reduction For Yield and Performan Enhancement

Dave Heller CEO, Heller Industries September 29, 2016

Eliminate Voids Improve Performance

- Improve heat dissipation of components or solder joint structures (i.e., current density increases with voiding)
- Improve long-term stability and reliability of solder joint against heat dissipation and vibration/shock
- May improve chip performance in high frequency applications


Void Reduction Reflow Technique 1

Vacuum assisted reflow

Vacuum Assisted Reflow

- Vacuum-assisted reflow has been shown to reduce the voids in a solder joint by 99%
- Pressure is dropped to 5-20 Torr during liquidus of the soldering process
- Existing voids escape externally through the solder when vacuum is applied.
 - □ Trapped gas bubbles increase in size as pressure is reduced
 - Larger bubbles are more likely to collide with other bubbles and ultimately collide with the edge of liquid solder to escape
 - Larger bubbles are accelerated by stronger buoyancy forces making them more likely to escape

Vacuum Assisted Reflow

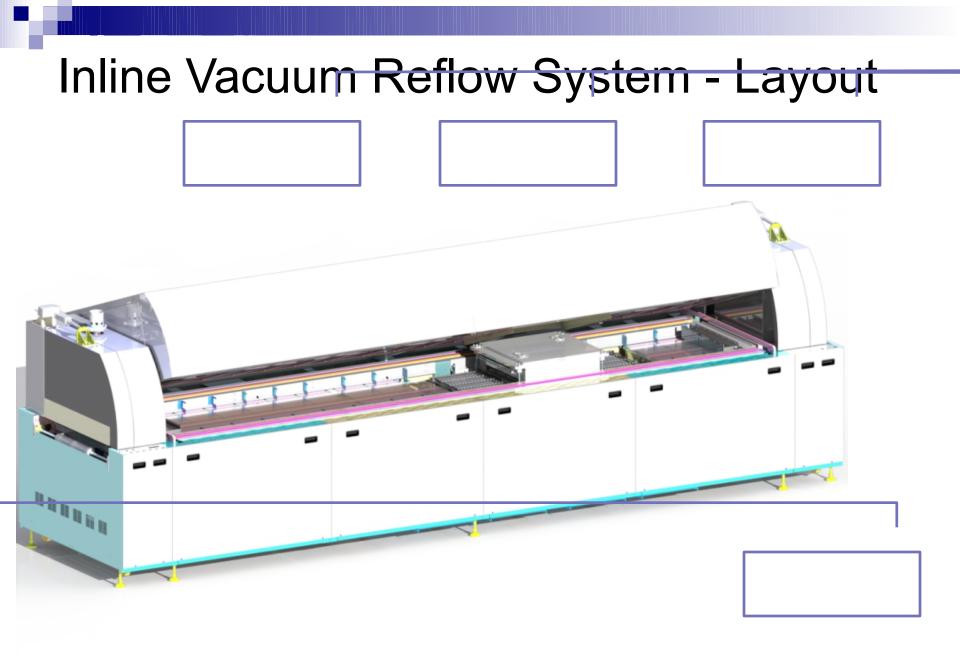
 Pressure inside trapped gas bubble changes according to Young-Laplace Equation

Pbubble = Pambient + 2γ / r

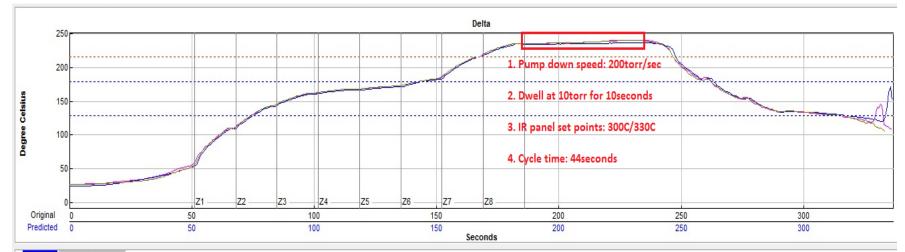
(where γ is surface tension and r is the radius of the bubble)

Bubble size is then determined by ideal gas law using Pbubble

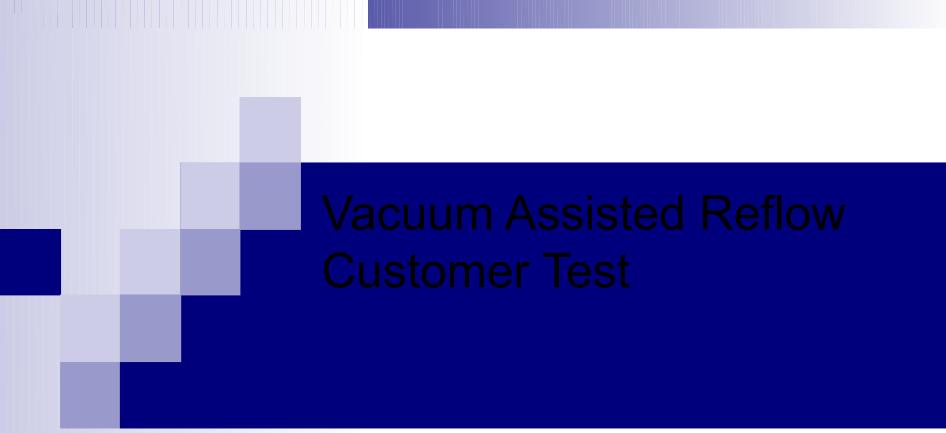
Convection Reflow


with Vacuum Module

- Heller Industries has developed a vacuum module that inserts directly in its reflow oven line
- Vacuum module is inserted in zone directly after reflow peak (liquidus) has occurred
- Vacuum module incorporates IR heating to allow for liquidus after vacuum is achieved
- Convection reflow with vacuum module is continuous and allows thermal profiles to be directly ported from non-vacuum reflow applications
- Continuous operation facilitates low COO and high UPH


Inline Vacuum Reflow System

51 EI EI A


Reflow Profile with Vacuum

TCs	Soak Time	e 130-180°C	Peak	Temp	Tot Tim	e /217°C		
TC2>	68.11	-68%	241.90	-24%	79.20	228%		
<tc3></tc3>	69.69	-61%	238.28	-169%	80.45	236%		
<tc4></tc4>	67.81	-69%	241.45	-42%	79.64	231%		
Delta	1.88		3.62		1.25			
P. <tc2></tc2>	68.11	-68%	241.90	-24%	79.20	228%		
P. <tc3></tc3>	69.69	-61%	238.28	-169%	80.45	236%		
P. <tc4></tc4>	67.81	-69%	241.45	-42%	79.64	231%		

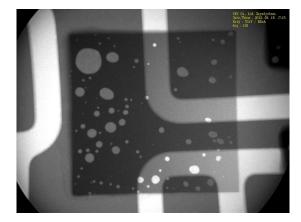
	P.W.I.	cm/min	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	Zone 7	Zone 8			
Original Top	236%	120.0	200	190	190	180	180	200	275	275			
Original Bottom	23076	120.0	200	190	190	180	180	200	275	275			
Predicted Top	236%	120.0	200	190	190	180	180	200	275	275			
Predicted Bottom	23076	120.0	200	190	190	180	180	200	275	275			
			200		.50			200	2.0	2.0			

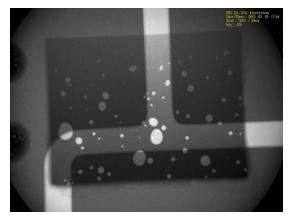
I Tan and Dattam are the same

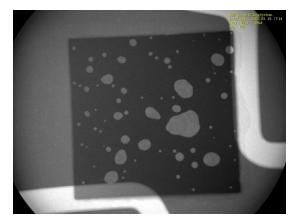
March 10, 2013

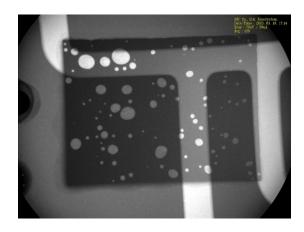
Test Conditions

Sample #	Vacuum Level [torr]	Dwell Time [sec]	Oxygen [PPM]	Remark
1	5	30	400	
2	5	120	400	**
3	10	30	400	
4	10	60	400	
5	20	30	400	
6	20	60	400	
7	Atmospheric	-	400	
** Should be 60 s	econds but mistakenly se	15 et to 120seconds.	400	

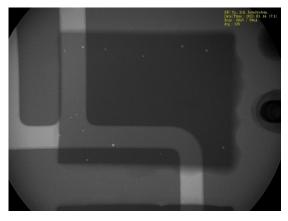

Die size = 7, 10mm square

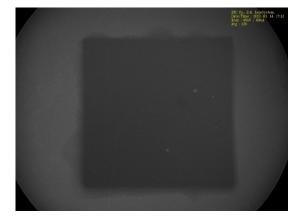

- Liquidus peak = 250oC
- Alloy type SAC 305 (217oC Melt Point)

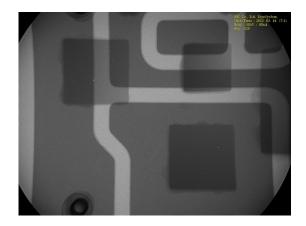

Test Results

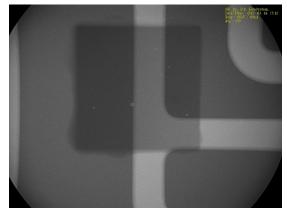

Void Ratio(W	/orst Case), [%]		
Sample	Vacuum Level [torr]	Dwell Time [sec]	Worst Case [%]
1	5	30	0.21
2	5	120	0.39
3	10	30	0.36
4	10	60	0.26
5	20	30	0.20
6	20	60	0.47
7	Atmospheric	-	7.64
8	5	15	0.48

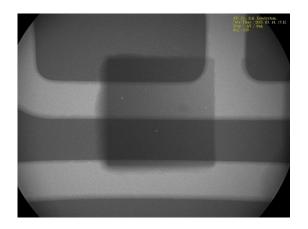
Test #7 Details-No Vacuum

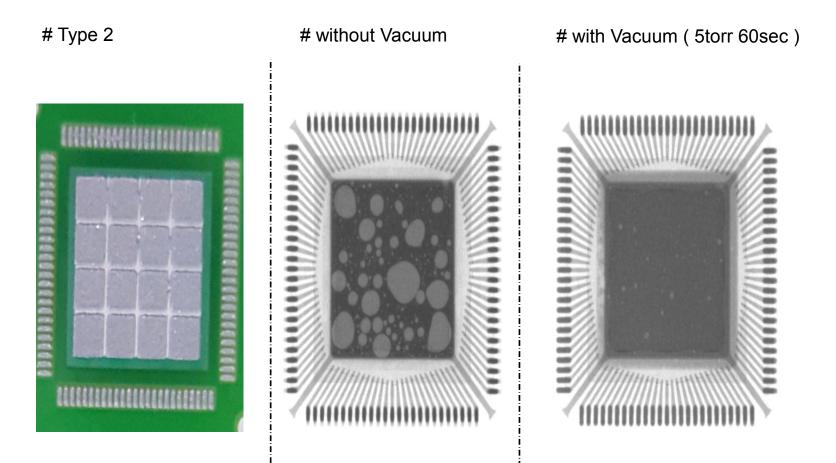


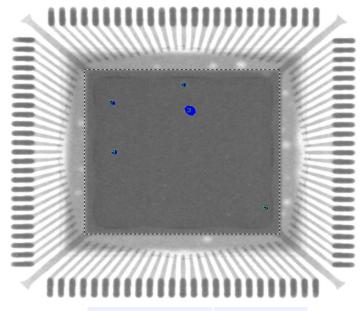




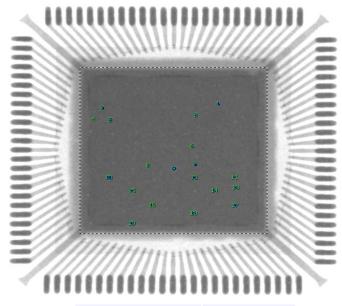

Test #1 w/ 5 Torr for 30 seconds 0.21% worst case voids






Results Stencil Design #2

1. QFN "MLF 100" of With Vacuum & Without Vacuum


Results

ENIG (20torr / 30sec)

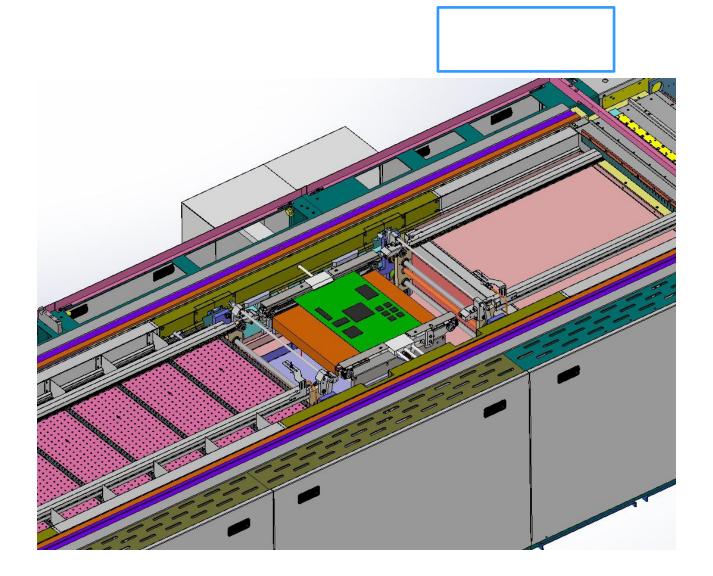
Object Count	5
Object Area	0.2059
Total Area	508.7804
Total Area Ratio	0.04%
AOI Area	48.7241
AOI Area Ratio	0.42%

ENIG (20torr / 60 sec)

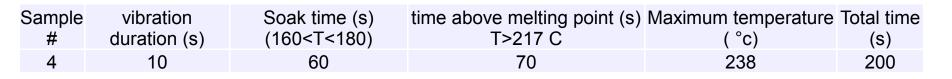
Object Count	19		
Object Area	0.176		
Total Area	508.7804		
Total Area Ratio	0.03%		
AOI Area	50.6555		
AOI Area Ratio	0.35%		

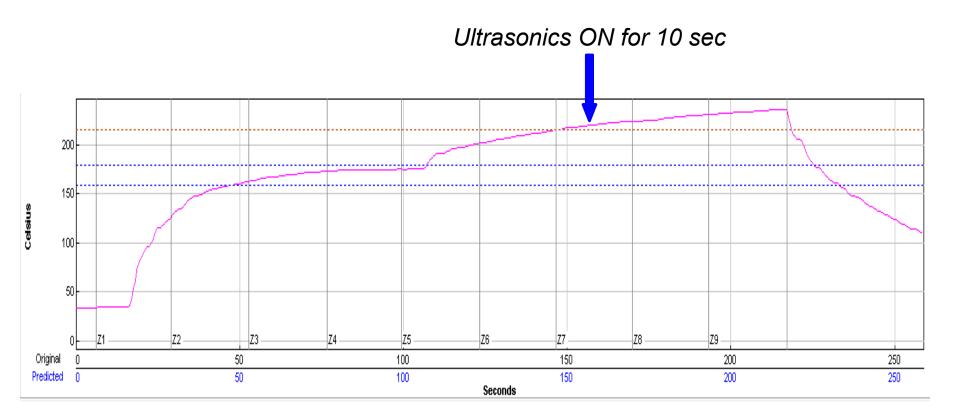
Vacuum Reflow Devoiding Summary

- Heller Industries now offers vacuum-assisted reflow through the inclusion of a vacuum module in its reflow oven line
- Vacuum-assisted reflow with convection heating utilizes continuous operation thermal profiles for low COO and high UPH.
- Heller Industries utilizes advanced pumping package with high capacity for fast pump-down time.
- Recent customer demonstration showed 10X reduction in voids, meeting spec of <1% total void area</p>
- Reflow time under vacuum of 15 seconds was able to achieve <1% total void area spec.</p>
- All pressures tested < 20 Torr met <1% total void area spec</p>

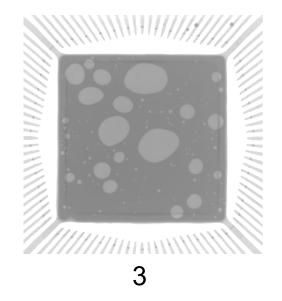

Void Reduction Reflow Technique 2

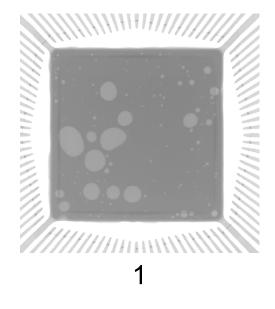
Ultrasonics VOID reducing reflow


Overview


- Heller Industries is working on solder devoiding solution that utilizes ultrasonics application to printed circuit board during solder reflow
- Ultrasonics are applied when solder is in liquid state
- Cavitation (in theory) works to
 - i. Stretch voids/bubbles so they combine with other voids and touch outer surface of solder to devoid
 - ii. Shocks bubbles during compression so that bubbles break in to numerous very small bubbles
- Ultrasonics also creates movement and mixing of bubbles which enhances coalescence and subsequent elimination

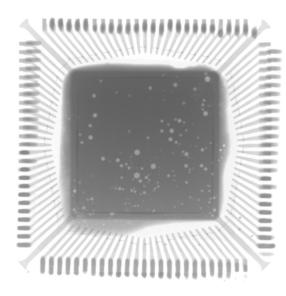
Ultrasonics Station in Convection Oven

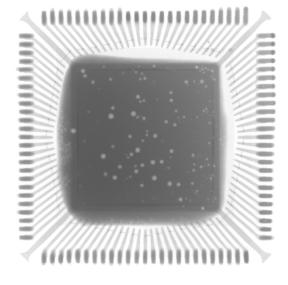

Ultrasonics Test Reflow Profile

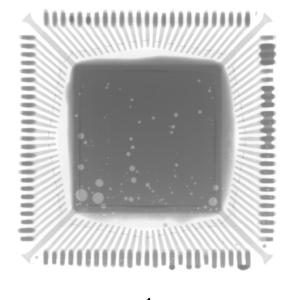

Void Results – No Ultrasonics

Sample	vibration	Soak time (s)	time above melting point (s)	Maximum temperature	Total time
#	duration (s)	(160 <t<180)< td=""><td>T>217 C</td><td>(°C)</td><td>(S)</td></t<180)<>	T>217 C	(°C)	(S)
1	0	50	60	239	208

Total void% =25.18 Largest void% =4.14 2


Total void% =13.16 Largest void% =2.82




Total void% =14.03 Largest void% =2.08

Void Results – Ultrasonics ON for 10

Sample	vibration	Soak time (s)	time above melting point (s)	Maximum temperature	Total time
#	duration (s)	(160 <t<180)< td=""><td>T>217 C</td><td>(°C)</td><td>(S)</td></t<180)<>	T>217 C	(°C)	(S)
3	10	46	76	238	220

3

Total void% =4.26 Largest void% =0.15 2

Total void% =3.77 Largest void% =0.13

Total void% =4.53 Largest void% =0.58

Ultrasonics Devoiding Reflow Summary

- Ultrasonics applied to PCB's after solder liquidus has demonstrated significant reduction in voids – both size and total percent
- Ultrasonics are applied to PCB's at very low levels and for very short durations – i.e., 10 sec and microns of displacement.
- Heller Industries is currently engineering ultrasonics coupler stations into its convection reflow ovens to facilitate solder